Discover the Path to Mathematical Mastery
An Education That Counts
This integration technique is particularly useful whenever either a sum-of-square or a difference-of-squares is found within the integrand. This approach is typically implemented to help reduce the complexity found among square-root functions.
Difference of Squares | ||
Substitution | Expression | Protocols |
Sine | \(\sqrt{a^2-u^2}\) | \(u=a\,\texttt{sin}(\theta)\) |
Secant | \(\sqrt{u^2-a^2}\) | \(u=a\,\texttt{sec}(\theta)\) |
Sum of Squares | ||
Substitution | Expression | Protocols |
Tangent | \(\sqrt{a^2+u^2}\) | \(u=a\,\texttt{tan}(\theta)\) |
Need some additional help understanding how to apply this integration technique? Click Here to visit the virtual lesson section.
Answer the following questions by using the integration technique known as trigonometric-substitution.
We begin by making the substitution \(\displaystyle 3x=\sin\theta\). Then, we have \(\displaystyle 3dx=\cos\theta d\theta\) and \(\displaystyle\sqrt{1-9x^2}=\sqrt{1-\sin^2\theta}=\cos\theta\). Substituting these expressions into the integral, we get
\(\begin{aligned} \int \sqrt{1-9x^2}{x} dx &= \int \frac{1}{3}\sin\theta(\cos\theta)\left(\frac{1}{3}\cos\theta d\theta\right) \\ &= \frac{1}{9}\int \sin\theta\cos^2\theta d\theta. \end{aligned}\)Next, we make the substitution \(u=\cos\theta\). Then, we have \(du=-\sin\theta d\theta\), so \(\sin\theta=-\sqrt{1-u^2}\). Substituting these expressions into the integral, we get
\(\begin{align} \frac{1}{9}\int \sin\theta\cos^2\theta d\theta &= \frac{1}{9}\int (-u^2+1)du\\ &= \frac{1}{9}\left[-\frac{u^3}{3}+u\right]+C \\ &= -\frac{1}{27}(1-3\cos^2\theta)\sqrt{1-9x^2}+C \\ &= -\frac{1}{27}(1-3x^2)\sqrt{1-9x^2}+C. \end{align}\)
Therefore, the solution to \(\displaystyle \int \sqrt{1-9x^2}{x} dx=-\frac{1}{27}(1-3x^2)\sqrt{1-9x^2}+C\), where \(C\) is the constant of integration.
We start by making the substitution:
\(5x=3\sin\theta\)Then, we have:
\( \sqrt{9-25x^2} = \sqrt{9-25\left(\frac{3}{5}\sin\theta\right)^2} = \sqrt{9-9\sin^2\theta} = 3\cos\theta\)Also, we have:
\(\begin{aligned}5 dx &= 3\cos\theta d\theta \end{aligned}\)Substituting these expressions into the integral, we get:
\(\begin{aligned} \int \sqrt{9-25x^2} dx &= \int 3\cos^2\theta\cdot\frac{3}{5}\cos\theta,d\theta \\ &= \frac{9}{5}\int\cos^3\theta,d\theta \end{aligned}\)To evaluate this integral, we use the reduction formula:
\(\int \cos^n\theta,d\theta = \frac{1}{n}\cos^{n-1}\theta\sin\theta + \frac{n-1}{n}\int \cos^{n-2}\theta d\theta\)Using this formula with \(n=3\), we get:
\(\begin{aligned} \int \cos^3\theta,d\theta &= \frac{1}{3}\cos^2\theta\sin\theta + \frac{2}{3}\int \cos\theta,d\theta \\ &= \frac{1}{3}\cos^2\theta\sin\theta + \frac{2}{3}\sin\theta + C \end{aligned}\)where \(C\) is the constant of integration.
Substituting back for \(\theta\) and simplifying, we get:
\(\begin{aligned} \int \sqrt{9-25x^2},dx &= \frac{9}{5}\int\cos^3\theta d\theta \\ &= \frac{9}{5}\left(\frac{1}{3}\cos^2\theta\sin\theta + \frac{2}{3}\sin\theta\right) + C \\ &= \frac{3}{5}\sin\theta\cos^2\theta + \frac{6}{5}\sin\theta + C \\ &= \frac{3}{5}x\sqrt{9-25x^2} + \frac{6}{5}\arcsin\left(\frac{3}{5}x\right) + C \end{aligned}\)Therefore, the solution to \(\displaystyle \int \sqrt{9-25x^2}{x} dx=\frac{3}{5}x\sqrt{9-25x^2} + \frac{6}{5}\arcsin\left(\frac{3}{5}x\right) + C\)
Check with your tutor
for additional hours.
S | M | T | W | T | F | S |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
OnlineMathTutor.co
All Rights Reserved.