Discover the Path to Mathematical Mastery
An Education That Counts
Also known as Simpson’s \(\textstyle\frac{1}{3}\) Rule is a numerical integration technique that improves upon the Trapezoidal Rule by utilizing the geometry of parabolic arcs. The number of partitions \(n\) must be even.
\(\displaystyle S_n=\frac{b-a}{3n}\big( f(x_0)+4f(x_1)+2f(x_2)+\cdots+4f(x_{n-1})+2f(x_n) \big)\)
\(\displaystyle \Delta x=\frac{b-a}{n}\quad \displaystyle x_k=a+k\Delta x\)
Check with your tutor
for additional hours.
S | M | T | W | T | F | S |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
OnlineMathTutor.co
All Rights Reserved.